extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC40).1C22 = C23.35D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).1C2^2 | 320,349 |
(C2xC40).2C22 = C23.10D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).2C2^2 | 320,350 |
(C2xC40).3C22 = D20.32D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).3C2^2 | 320,360 |
(C2xC40).4C22 = C22.D40 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).4C2^2 | 320,363 |
(C2xC40).5C22 = C22:Dic20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).5C2^2 | 320,366 |
(C2xC40).6C22 = Dic5.14D8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).6C2^2 | 320,386 |
(C2xC40).7C22 = D4.2Dic10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).7C2^2 | 320,393 |
(C2xC40).8C22 = Dic10.D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).8C2^2 | 320,394 |
(C2xC40).9C22 = D10.12D8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).9C2^2 | 320,401 |
(C2xC40).10C22 = D4.D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).10C2^2 | 320,410 |
(C2xC40).11C22 = C40:5C4:C2 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).11C2^2 | 320,411 |
(C2xC40).12C22 = D20:3D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).12C2^2 | 320,413 |
(C2xC40).13C22 = Dic5:Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).13C2^2 | 320,420 |
(C2xC40).14C22 = Dic5.9Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).14C2^2 | 320,421 |
(C2xC40).15C22 = Q8.Dic10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).15C2^2 | 320,423 |
(C2xC40).16C22 = D10:4Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).16C2^2 | 320,435 |
(C2xC40).17C22 = D10.7Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).17C2^2 | 320,436 |
(C2xC40).18C22 = D20:4D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).18C2^2 | 320,438 |
(C2xC40).19C22 = (C2xC8).D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).19C2^2 | 320,441 |
(C2xC40).20C22 = D20.12D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).20C2^2 | 320,446 |
(C2xC40).21C22 = Dic10.3Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).21C2^2 | 320,456 |
(C2xC40).22C22 = C4:D40 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).22C2^2 | 320,470 |
(C2xC40).23C22 = D20.19D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).23C2^2 | 320,471 |
(C2xC40).24C22 = C42.36D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).24C2^2 | 320,472 |
(C2xC40).25C22 = D20:4Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).25C2^2 | 320,473 |
(C2xC40).26C22 = D20.3Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).26C2^2 | 320,474 |
(C2xC40).27C22 = C4:Dic20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).27C2^2 | 320,476 |
(C2xC40).28C22 = C20.7Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).28C2^2 | 320,477 |
(C2xC40).29C22 = D8.Dic5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).29C2^2 | 320,121 |
(C2xC40).30C22 = Q16.Dic5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).30C2^2 | 320,123 |
(C2xC40).31C22 = D8.D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).31C2^2 | 320,774 |
(C2xC40).32C22 = C40.23D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).32C2^2 | 320,787 |
(C2xC40).33C22 = Q16.D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).33C2^2 | 320,806 |
(C2xC40).34C22 = C40.29D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).34C2^2 | 320,819 |
(C2xC40).35C22 = D20.30D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).35C2^2 | 320,1438 |
(C2xC40).36C22 = C40.7Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).36C2^2 | 320,51 |
(C2xC40).37C22 = D40.5C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).37C2^2 | 320,55 |
(C2xC40).38C22 = C20.58D8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).38C2^2 | 320,125 |
(C2xC40).39C22 = D5xC8.C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).39C2^2 | 320,519 |
(C2xC40).40C22 = M4(2).25D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).40C2^2 | 320,520 |
(C2xC40).41C22 = D40:16C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).41C2^2 | 320,521 |
(C2xC40).42C22 = D40:13C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).42C2^2 | 320,522 |
(C2xC40).43C22 = C40.30C23 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).43C2^2 | 320,821 |
(C2xC40).44C22 = D8:5Dic5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).44C2^2 | 320,823 |
(C2xC40).45C22 = D8:4Dic5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).45C2^2 | 320,824 |
(C2xC40).46C22 = C8.Dic10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).46C2^2 | 320,45 |
(C2xC40).47C22 = D40:14C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).47C2^2 | 320,46 |
(C2xC40).48C22 = C40.44D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).48C2^2 | 320,804 |
(C2xC40).49C22 = C40.Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).49C2^2 | 320,71 |
(C2xC40).50C22 = D40.4C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4+ | (C2xC40).50C2^2 | 320,74 |
(C2xC40).51C22 = C20.4D8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4- | (C2xC40).51C2^2 | 320,75 |
(C2xC40).52C22 = D40:8C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).52C2^2 | 320,76 |
(C2xC40).53C22 = C8:Dic10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).53C2^2 | 320,329 |
(C2xC40).54C22 = C42.16D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).54C2^2 | 320,337 |
(C2xC40).55C22 = D40:9C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).55C2^2 | 320,338 |
(C2xC40).56C22 = C8:D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).56C2^2 | 320,339 |
(C2xC40).57C22 = C8.D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).57C2^2 | 320,342 |
(C2xC40).58C22 = Dic20:9C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).58C2^2 | 320,343 |
(C2xC40).59C22 = D80:C2 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4+ | (C2xC40).59C2^2 | 320,535 |
(C2xC40).60C22 = C16.D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4- | (C2xC40).60C2^2 | 320,536 |
(C2xC40).61C22 = C23.47D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).61C2^2 | 320,748 |
(C2xC40).62C22 = M4(2).Dic5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).62C2^2 | 320,752 |
(C2xC40).63C22 = C40:2D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).63C2^2 | 320,761 |
(C2xC40).64C22 = C40:3D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).64C2^2 | 320,762 |
(C2xC40).65C22 = C40.4D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).65C2^2 | 320,764 |
(C2xC40).66C22 = D4.3D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).66C2^2 | 320,768 |
(C2xC40).67C22 = D4.4D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4+ | (C2xC40).67C2^2 | 320,769 |
(C2xC40).68C22 = D4.5D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4- | (C2xC40).68C2^2 | 320,770 |
(C2xC40).69C22 = C2xC8.D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).69C2^2 | 320,1419 |
(C2xC40).70C22 = D4.13D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4- | (C2xC40).70C2^2 | 320,1425 |
(C2xC40).71C22 = C40.2Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).71C2^2 | 320,47 |
(C2xC40).72C22 = C10.SD32 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).72C2^2 | 320,48 |
(C2xC40).73C22 = C40.5D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).73C2^2 | 320,49 |
(C2xC40).74C22 = C10.Q32 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).74C2^2 | 320,50 |
(C2xC40).75C22 = C10.D16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).75C2^2 | 320,120 |
(C2xC40).76C22 = C40.15D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).76C2^2 | 320,122 |
(C2xC40).77C22 = D40:12C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).77C2^2 | 320,499 |
(C2xC40).78C22 = Dic5:5Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).78C2^2 | 320,500 |
(C2xC40).79C22 = C40:2Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).79C2^2 | 320,501 |
(C2xC40).80C22 = C8.6Dic10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).80C2^2 | 320,505 |
(C2xC40).81C22 = D5xC2.D8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).81C2^2 | 320,506 |
(C2xC40).82C22 = C8.27(C4xD5) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).82C2^2 | 320,507 |
(C2xC40).83C22 = C8:7D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).83C2^2 | 320,510 |
(C2xC40).84C22 = D10:2Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).84C2^2 | 320,514 |
(C2xC40).85C22 = C2xC5:D16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).85C2^2 | 320,773 |
(C2xC40).86C22 = C2xD8.D5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).86C2^2 | 320,775 |
(C2xC40).87C22 = D8xDic5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).87C2^2 | 320,776 |
(C2xC40).88C22 = C40:5D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).88C2^2 | 320,778 |
(C2xC40).89C22 = C40.22D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).89C2^2 | 320,782 |
(C2xC40).90C22 = C40:6D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).90C2^2 | 320,784 |
(C2xC40).91C22 = C2xC5:SD32 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).91C2^2 | 320,805 |
(C2xC40).92C22 = C2xC5:Q32 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).92C2^2 | 320,807 |
(C2xC40).93C22 = C40.26D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).93C2^2 | 320,808 |
(C2xC40).94C22 = Q16xDic5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).94C2^2 | 320,810 |
(C2xC40).95C22 = D10:3Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).95C2^2 | 320,815 |
(C2xC40).96C22 = C40.28D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).96C2^2 | 320,818 |
(C2xC40).97C22 = C2xD8:3D5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).97C2^2 | 320,1428 |
(C2xC40).98C22 = C2xD5xQ16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).98C2^2 | 320,1435 |
(C2xC40).99C22 = C2xQ8.D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).99C2^2 | 320,1437 |
(C2xC40).100C22 = D40.6C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4+ | (C2xC40).100C2^2 | 320,53 |
(C2xC40).101C22 = C40.8D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4- | (C2xC40).101C2^2 | 320,54 |
(C2xC40).102C22 = C8.20D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4- | (C2xC40).102C2^2 | 320,523 |
(C2xC40).103C22 = C8.21D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4+ | (C2xC40).103C2^2 | 320,524 |
(C2xC40).104C22 = D8:D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4+ | (C2xC40).104C2^2 | 320,820 |
(C2xC40).105C22 = C40.31C23 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4- | (C2xC40).105C2^2 | 320,822 |
(C2xC40).106C22 = D20.47D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4- | (C2xC40).106C2^2 | 320,1443 |
(C2xC40).107C22 = Dic20:15C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).107C2^2 | 320,480 |
(C2xC40).108C22 = C40:3Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).108C2^2 | 320,483 |
(C2xC40).109C22 = C8:(C4xD5) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).109C2^2 | 320,488 |
(C2xC40).110C22 = C8:2D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).110C2^2 | 320,492 |
(C2xC40).111C22 = C8.2D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).111C2^2 | 320,495 |
(C2xC40).112C22 = D40:15C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).112C2^2 | 320,496 |
(C2xC40).113C22 = SD16:Dic5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).113C2^2 | 320,791 |
(C2xC40).114C22 = C40.31D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).114C2^2 | 320,794 |
(C2xC40).115C22 = C40:8D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).115C2^2 | 320,801 |
(C2xC40).116C22 = C40:9D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).116C2^2 | 320,803 |
(C2xC40).117C22 = C2xSD16:D5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).117C2^2 | 320,1432 |
(C2xC40).118C22 = C23.34D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).118C2^2 | 320,348 |
(C2xC40).119C22 = D20:14D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).119C2^2 | 320,361 |
(C2xC40).120C22 = C23.38D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).120C2^2 | 320,362 |
(C2xC40).121C22 = C23.13D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).121C2^2 | 320,364 |
(C2xC40).122C22 = Dic10:14D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).122C2^2 | 320,365 |
(C2xC40).123C22 = D4:Dic10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).123C2^2 | 320,388 |
(C2xC40).124C22 = Dic10:2D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).124C2^2 | 320,389 |
(C2xC40).125C22 = D4.Dic10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).125C2^2 | 320,390 |
(C2xC40).126C22 = D10.16SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).126C2^2 | 320,404 |
(C2xC40).127C22 = C40:6C4:C2 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).127C2^2 | 320,406 |
(C2xC40).128C22 = D4:3D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).128C2^2 | 320,408 |
(C2xC40).129C22 = D20.D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).129C2^2 | 320,414 |
(C2xC40).130C22 = Q8:Dic10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).130C2^2 | 320,418 |
(C2xC40).131C22 = Dic10.11D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).131C2^2 | 320,425 |
(C2xC40).132C22 = Q8.2Dic10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).132C2^2 | 320,426 |
(C2xC40).133C22 = D10.11SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).133C2^2 | 320,432 |
(C2xC40).134C22 = Q8:2D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).134C2^2 | 320,433 |
(C2xC40).135C22 = Q8.D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).135C2^2 | 320,437 |
(C2xC40).136C22 = D10:1C8.C2 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).136C2^2 | 320,442 |
(C2xC40).137C22 = Dic5:SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).137C2^2 | 320,445 |
(C2xC40).138C22 = C20:SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).138C2^2 | 320,468 |
(C2xC40).139C22 = D20:3Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).139C2^2 | 320,469 |
(C2xC40).140C22 = Dic10:8D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).140C2^2 | 320,475 |
(C2xC40).141C22 = Dic10:4Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).141C2^2 | 320,478 |
(C2xC40).142C22 = C40:4Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).142C2^2 | 320,503 |
(C2xC40).143C22 = C40:20(C2xC4) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).143C2^2 | 320,508 |
(C2xC40).144C22 = C8:3D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).144C2^2 | 320,513 |
(C2xC40).145C22 = C40:21(C2xC4) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).145C2^2 | 320,516 |
(C2xC40).146C22 = D8:Dic5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).146C2^2 | 320,779 |
(C2xC40).147C22 = C40:11D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).147C2^2 | 320,781 |
(C2xC40).148C22 = C40:12D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).148C2^2 | 320,786 |
(C2xC40).149C22 = Q16:Dic5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).149C2^2 | 320,811 |
(C2xC40).150C22 = C40.36D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).150C2^2 | 320,816 |
(C2xC40).151C22 = C40.37D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).151C2^2 | 320,817 |
(C2xC40).152C22 = C2xQ16:D5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).152C2^2 | 320,1436 |
(C2xC40).153C22 = C40.6Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).153C2^2 | 320,52 |
(C2xC40).154C22 = D8:2Dic5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).154C2^2 | 320,124 |
(C2xC40).155C22 = C8.24D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).155C2^2 | 320,525 |
(C2xC40).156C22 = Dic5:8SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).156C2^2 | 320,479 |
(C2xC40).157C22 = C40:5Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).157C2^2 | 320,482 |
(C2xC40).158C22 = C8.8Dic10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).158C2^2 | 320,485 |
(C2xC40).159C22 = D5xC4.Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).159C2^2 | 320,486 |
(C2xC40).160C22 = (C8xD5):C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).160C2^2 | 320,487 |
(C2xC40).161C22 = C8:8D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).161C2^2 | 320,491 |
(C2xC40).162C22 = SD16xDic5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).162C2^2 | 320,788 |
(C2xC40).163C22 = C40.43D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).163C2^2 | 320,795 |
(C2xC40).164C22 = C40:14D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).164C2^2 | 320,798 |
(C2xC40).165C22 = C40:15D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).165C2^2 | 320,802 |
(C2xC40).166C22 = C2xSD16:3D5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).166C2^2 | 320,1433 |
(C2xC40).167C22 = Dic5.14M4(2) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).167C2^2 | 320,345 |
(C2xC40).168C22 = Dic5.9M4(2) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).168C2^2 | 320,346 |
(C2xC40).169C22 = C40:8C4:C2 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).169C2^2 | 320,347 |
(C2xC40).170C22 = C5:5(C8xD4) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).170C2^2 | 320,352 |
(C2xC40).171C22 = C22:C8:D5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).171C2^2 | 320,354 |
(C2xC40).172C22 = D10:4M4(2) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).172C2^2 | 320,355 |
(C2xC40).173C22 = Dic5:2M4(2) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).173C2^2 | 320,356 |
(C2xC40).174C22 = C5:2C8:26D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).174C2^2 | 320,357 |
(C2xC40).175C22 = Dic5:4D8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).175C2^2 | 320,383 |
(C2xC40).176C22 = D4.D5:5C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).176C2^2 | 320,384 |
(C2xC40).177C22 = Dic5:6SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).177C2^2 | 320,385 |
(C2xC40).178C22 = Dic5.5D8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).178C2^2 | 320,387 |
(C2xC40).179C22 = C4:C4.D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).179C2^2 | 320,391 |
(C2xC40).180C22 = C20:Q8:C2 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).180C2^2 | 320,392 |
(C2xC40).181C22 = (C8xDic5):C2 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).181C2^2 | 320,395 |
(C2xC40).182C22 = D4:(C4xD5) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).182C2^2 | 320,398 |
(C2xC40).183C22 = D4:2D5:C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).183C2^2 | 320,399 |
(C2xC40).184C22 = D10:D8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).184C2^2 | 320,402 |
(C2xC40).185C22 = D10:SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).185C2^2 | 320,405 |
(C2xC40).186C22 = C5:2C8:D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).186C2^2 | 320,407 |
(C2xC40).187C22 = C5:(C8:2D4) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).187C2^2 | 320,409 |
(C2xC40).188C22 = D4:D5:6C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).188C2^2 | 320,412 |
(C2xC40).189C22 = Dic5:7SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).189C2^2 | 320,415 |
(C2xC40).190C22 = C5:Q16:5C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).190C2^2 | 320,416 |
(C2xC40).191C22 = Dic5:4Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).191C2^2 | 320,417 |
(C2xC40).192C22 = Dic5.3Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).192C2^2 | 320,419 |
(C2xC40).193C22 = Q8:C4:D5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).193C2^2 | 320,422 |
(C2xC40).194C22 = C40:8C4.C2 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).194C2^2 | 320,424 |
(C2xC40).195C22 = Q8:Dic5:C2 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).195C2^2 | 320,427 |
(C2xC40).196C22 = D5xQ8:C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).196C2^2 | 320,428 |
(C2xC40).197C22 = (Q8xD5):C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).197C2^2 | 320,429 |
(C2xC40).198C22 = Q8:(C4xD5) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).198C2^2 | 320,430 |
(C2xC40).199C22 = Q8:2D5:C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).199C2^2 | 320,431 |
(C2xC40).200C22 = D10:2SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).200C2^2 | 320,434 |
(C2xC40).201C22 = C5:(C8:D4) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).201C2^2 | 320,439 |
(C2xC40).202C22 = D10:Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).202C2^2 | 320,440 |
(C2xC40).203C22 = C5:2C8.D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).203C2^2 | 320,443 |
(C2xC40).204C22 = Q8:D5:6C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).204C2^2 | 320,444 |
(C2xC40).205C22 = Dic5.5M4(2) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).205C2^2 | 320,455 |
(C2xC40).206C22 = Dic10:5C8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).206C2^2 | 320,457 |
(C2xC40).207C22 = C42.198D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).207C2^2 | 320,458 |
(C2xC40).208C22 = D5xC4:C8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).208C2^2 | 320,459 |
(C2xC40).209C22 = C42.200D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).209C2^2 | 320,460 |
(C2xC40).210C22 = D20:5C8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).210C2^2 | 320,461 |
(C2xC40).211C22 = C42.202D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).211C2^2 | 320,462 |
(C2xC40).212C22 = D10:5M4(2) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).212C2^2 | 320,463 |
(C2xC40).213C22 = C20:5M4(2) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).213C2^2 | 320,464 |
(C2xC40).214C22 = C20:6M4(2) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).214C2^2 | 320,465 |
(C2xC40).215C22 = C42.30D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).215C2^2 | 320,466 |
(C2xC40).216C22 = C42.31D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).216C2^2 | 320,467 |
(C2xC40).217C22 = C20.45C42 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).217C2^2 | 320,24 |
(C2xC40).218C22 = C40.9Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).218C2^2 | 320,69 |
(C2xC40).219C22 = C80:C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).219C2^2 | 320,70 |
(C2xC40).220C22 = C8.25D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).220C2^2 | 320,72 |
(C2xC40).221C22 = D20.4C8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).221C2^2 | 320,73 |
(C2xC40).222C22 = C40.D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).222C2^2 | 320,111 |
(C2xC40).223C22 = C40.92D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).223C2^2 | 320,119 |
(C2xC40).224C22 = C40:Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).224C2^2 | 320,328 |
(C2xC40).225C22 = D5xC8:C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).225C2^2 | 320,331 |
(C2xC40).226C22 = C8:9D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).226C2^2 | 320,333 |
(C2xC40).227C22 = D10.6C42 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).227C2^2 | 320,334 |
(C2xC40).228C22 = D10.7C42 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).228C2^2 | 320,335 |
(C2xC40).229C22 = D40:10C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).229C2^2 | 320,344 |
(C2xC40).230C22 = D5xM5(2) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).230C2^2 | 320,533 |
(C2xC40).231C22 = D20.5C8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).231C2^2 | 320,534 |
(C2xC40).232C22 = M4(2)xDic5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).232C2^2 | 320,744 |
(C2xC40).233C22 = C20.37C42 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).233C2^2 | 320,749 |
(C2xC40).234C22 = C40:D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).234C2^2 | 320,754 |
(C2xC40).235C22 = C40.70C23 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).235C2^2 | 320,767 |
(C2xC40).236C22 = C40.93D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).236C2^2 | 320,771 |
(C2xC40).237C22 = C40.50D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).237C2^2 | 320,772 |
(C2xC40).238C22 = C2xD20.2C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).238C2^2 | 320,1416 |
(C2xC40).239C22 = Dic10:2Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).239C2^2 | 320,502 |
(C2xC40).240C22 = Dic10.2Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).240C2^2 | 320,504 |
(C2xC40).241C22 = D10.13D8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).241C2^2 | 320,509 |
(C2xC40).242C22 = D10.8Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).242C2^2 | 320,511 |
(C2xC40).243C22 = C2.D8:D5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).243C2^2 | 320,512 |
(C2xC40).244C22 = C2.D8:7D5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).244C2^2 | 320,515 |
(C2xC40).245C22 = D20:2Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).245C2^2 | 320,517 |
(C2xC40).246C22 = D20.2Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).246C2^2 | 320,518 |
(C2xC40).247C22 = Dic5:D8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).247C2^2 | 320,777 |
(C2xC40).248C22 = (C2xD8).D5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).248C2^2 | 320,780 |
(C2xC40).249C22 = Dic10:D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).249C2^2 | 320,785 |
(C2xC40).250C22 = Dic5:3Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).250C2^2 | 320,809 |
(C2xC40).251C22 = (C2xQ16):D5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).251C2^2 | 320,812 |
(C2xC40).252C22 = D10:5Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).252C2^2 | 320,813 |
(C2xC40).253C22 = D20.17D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).253C2^2 | 320,814 |
(C2xC40).254C22 = C5xC22:Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).254C2^2 | 320,952 |
(C2xC40).255C22 = C5xD4.7D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).255C2^2 | 320,953 |
(C2xC40).256C22 = C5xC4:D8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).256C2^2 | 320,960 |
(C2xC40).257C22 = C5xC4:2Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).257C2^2 | 320,963 |
(C2xC40).258C22 = C5xQ8.D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).258C2^2 | 320,965 |
(C2xC40).259C22 = C5xD4:Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).259C2^2 | 320,975 |
(C2xC40).260C22 = C5xC4.Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).260C2^2 | 320,978 |
(C2xC40).261C22 = C5xQ8.Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).261C2^2 | 320,980 |
(C2xC40).262C22 = C5xC22.D8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).262C2^2 | 320,981 |
(C2xC40).263C22 = C5xC23.48D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).263C2^2 | 320,985 |
(C2xC40).264C22 = C5xC23.20D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).264C2^2 | 320,986 |
(C2xC40).265C22 = C5xD8:2C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).265C2^2 | 320,165 |
(C2xC40).266C22 = C5xM5(2):C2 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).266C2^2 | 320,166 |
(C2xC40).267C22 = C5xC8.17D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).267C2^2 | 320,167 |
(C2xC40).268C22 = C5xC8.Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).268C2^2 | 320,170 |
(C2xC40).269C22 = C5xM4(2):C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).269C2^2 | 320,929 |
(C2xC40).270C22 = C5xM4(2).C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).270C2^2 | 320,931 |
(C2xC40).271C22 = C5xC8.26D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).271C2^2 | 320,945 |
(C2xC40).272C22 = C5xD4.3D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).272C2^2 | 320,972 |
(C2xC40).273C22 = C5xD4.4D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).273C2^2 | 320,973 |
(C2xC40).274C22 = C5xD4.5D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).274C2^2 | 320,974 |
(C2xC40).275C22 = C5xC8:3D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).275C2^2 | 320,997 |
(C2xC40).276C22 = C5xC8.2D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).276C2^2 | 320,998 |
(C2xC40).277C22 = C5xC8:Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).277C2^2 | 320,1002 |
(C2xC40).278C22 = C5xC16:C22 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).278C2^2 | 320,1010 |
(C2xC40).279C22 = C5xQ32:C2 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).279C2^2 | 320,1011 |
(C2xC40).280C22 = C10xC8.C22 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).280C2^2 | 320,1576 |
(C2xC40).281C22 = C5xQ8oD8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | 4 | (C2xC40).281C2^2 | 320,1580 |
(C2xC40).282C22 = Dic10:Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).282C2^2 | 320,481 |
(C2xC40).283C22 = Dic10.Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).283C2^2 | 320,484 |
(C2xC40).284C22 = D10.12SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).284C2^2 | 320,489 |
(C2xC40).285C22 = D10.17SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).285C2^2 | 320,490 |
(C2xC40).286C22 = C4.Q8:D5 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).286C2^2 | 320,493 |
(C2xC40).287C22 = C20.(C4oD4) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).287C2^2 | 320,494 |
(C2xC40).288C22 = D20:Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).288C2^2 | 320,497 |
(C2xC40).289C22 = D20.Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).289C2^2 | 320,498 |
(C2xC40).290C22 = Dic5:3SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).290C2^2 | 320,789 |
(C2xC40).291C22 = Dic5:5SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).291C2^2 | 320,790 |
(C2xC40).292C22 = (C5xD4).D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).292C2^2 | 320,792 |
(C2xC40).293C22 = (C5xQ8).D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).293C2^2 | 320,793 |
(C2xC40).294C22 = D10:8SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).294C2^2 | 320,797 |
(C2xC40).295C22 = D20:7D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).295C2^2 | 320,799 |
(C2xC40).296C22 = Dic10.16D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).296C2^2 | 320,800 |
(C2xC40).297C22 = C5xQ8:D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).297C2^2 | 320,949 |
(C2xC40).298C22 = C5xD4:D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).298C2^2 | 320,950 |
(C2xC40).299C22 = C5xC4:SD16 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).299C2^2 | 320,961 |
(C2xC40).300C22 = C5xD4.D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).300C2^2 | 320,962 |
(C2xC40).301C22 = C5xD4.2D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).301C2^2 | 320,964 |
(C2xC40).302C22 = C5xQ8:Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).302C2^2 | 320,976 |
(C2xC40).303C22 = C5xD4:2Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).303C2^2 | 320,977 |
(C2xC40).304C22 = C5xD4.Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).304C2^2 | 320,979 |
(C2xC40).305C22 = C5xC23.46D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).305C2^2 | 320,982 |
(C2xC40).306C22 = C5xC23.19D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).306C2^2 | 320,983 |
(C2xC40).307C22 = C5xC23.47D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).307C2^2 | 320,984 |
(C2xC40).308C22 = C5xC16:C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).308C2^2 | 320,152 |
(C2xC40).309C22 = C5xC23.C8 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 80 | 4 | (C2xC40).309C2^2 | 320,154 |
(C2xC40).310C22 = C42.14D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).310C2^2 | 320,330 |
(C2xC40).311C22 = C42.182D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).311C2^2 | 320,332 |
(C2xC40).312C22 = C42.185D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).312C2^2 | 320,336 |
(C2xC40).313C22 = C42.19D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).313C2^2 | 320,340 |
(C2xC40).314C22 = C42.20D10 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).314C2^2 | 320,341 |
(C2xC40).315C22 = Dic5:5M4(2) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).315C2^2 | 320,745 |
(C2xC40).316C22 = C20.51(C4:C4) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).316C2^2 | 320,746 |
(C2xC40).317C22 = C23.46D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).317C2^2 | 320,747 |
(C2xC40).318C22 = C40:18D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).318C2^2 | 320,755 |
(C2xC40).319C22 = C4.89(C2xD20) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).319C2^2 | 320,756 |
(C2xC40).320C22 = C23.49D20 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).320C2^2 | 320,760 |
(C2xC40).321C22 = C5x(C22xC8):C2 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).321C2^2 | 320,909 |
(C2xC40).322C22 = C5xC23.36D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).322C2^2 | 320,918 |
(C2xC40).323C22 = C5xC23.38D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).323C2^2 | 320,920 |
(C2xC40).324C22 = C5xC4:M4(2) | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).324C2^2 | 320,924 |
(C2xC40).325C22 = C5xC42.6C22 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).325C2^2 | 320,925 |
(C2xC40).326C22 = C5xC42.6C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).326C2^2 | 320,933 |
(C2xC40).327C22 = C5xC42.7C22 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).327C2^2 | 320,934 |
(C2xC40).328C22 = C5xC8:6D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).328C2^2 | 320,937 |
(C2xC40).329C22 = C5xSD16:C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).329C2^2 | 320,941 |
(C2xC40).330C22 = C5xQ16:C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).330C2^2 | 320,942 |
(C2xC40).331C22 = C5xD8:C4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).331C2^2 | 320,943 |
(C2xC40).332C22 = C5xC8:D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).332C2^2 | 320,969 |
(C2xC40).333C22 = C5xC8:2D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).333C2^2 | 320,970 |
(C2xC40).334C22 = C5xC8.D4 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).334C2^2 | 320,971 |
(C2xC40).335C22 = C5xC42.28C22 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).335C2^2 | 320,990 |
(C2xC40).336C22 = C5xC42.29C22 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 160 | | (C2xC40).336C2^2 | 320,991 |
(C2xC40).337C22 = C5xC42.30C22 | φ: C22/C1 → C22 ⊆ Aut C2xC40 | 320 | | (C2xC40).337C2^2 | 320,992 |
(C2xC40).338C22 = C8xDic10 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).338C2^2 | 320,305 |
(C2xC40).339C22 = C40:11Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).339C2^2 | 320,306 |
(C2xC40).340C22 = C20.14Q16 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).340C2^2 | 320,308 |
(C2xC40).341C22 = C42.282D10 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).341C2^2 | 320,312 |
(C2xC40).342C22 = C8xD20 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).342C2^2 | 320,313 |
(C2xC40).343C22 = C8:6D20 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).343C2^2 | 320,315 |
(C2xC40).344C22 = C42.243D10 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).344C2^2 | 320,317 |
(C2xC40).345C22 = C4xC40:C2 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).345C2^2 | 320,318 |
(C2xC40).346C22 = C4xD40 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).346C2^2 | 320,319 |
(C2xC40).347C22 = C4.5D40 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).347C2^2 | 320,321 |
(C2xC40).348C22 = C42.264D10 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).348C2^2 | 320,324 |
(C2xC40).349C22 = C4xDic20 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).349C2^2 | 320,325 |
(C2xC40).350C22 = C2xC20.8Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).350C2^2 | 320,726 |
(C2xC40).351C22 = C20.65(C4:C4) | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).351C2^2 | 320,729 |
(C2xC40).352C22 = C2xC20.44D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).352C2^2 | 320,730 |
(C2xC40).353C22 = C8xC5:D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).353C2^2 | 320,736 |
(C2xC40).354C22 = (C22xC8):D5 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).354C2^2 | 320,737 |
(C2xC40).355C22 = C40:32D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).355C2^2 | 320,738 |
(C2xC40).356C22 = C23.23D20 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).356C2^2 | 320,740 |
(C2xC40).357C22 = C10xQ8:C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).357C2^2 | 320,916 |
(C2xC40).358C22 = C5xC23.24D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).358C2^2 | 320,917 |
(C2xC40).359C22 = C10xC4:C8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).359C2^2 | 320,923 |
(C2xC40).360C22 = C5xC42.12C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).360C2^2 | 320,932 |
(C2xC40).361C22 = D4xC40 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).361C2^2 | 320,935 |
(C2xC40).362C22 = Q8xC40 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).362C2^2 | 320,946 |
(C2xC40).363C22 = C5xC8:8D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).363C2^2 | 320,966 |
(C2xC40).364C22 = C5xC8:7D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).364C2^2 | 320,967 |
(C2xC40).365C22 = C5xC8.18D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).365C2^2 | 320,968 |
(C2xC40).366C22 = C5xC4.4D8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).366C2^2 | 320,987 |
(C2xC40).367C22 = C5xC4.SD16 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).367C2^2 | 320,988 |
(C2xC40).368C22 = C5xC42.78C22 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).368C2^2 | 320,989 |
(C2xC40).369C22 = C40.78D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).369C2^2 | 320,61 |
(C2xC40).370C22 = C80:13C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).370C2^2 | 320,62 |
(C2xC40).371C22 = C80:14C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).371C2^2 | 320,63 |
(C2xC40).372C22 = D40:7C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).372C2^2 | 320,67 |
(C2xC40).373C22 = C40:8Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).373C2^2 | 320,309 |
(C2xC40).374C22 = C20:4D8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).374C2^2 | 320,322 |
(C2xC40).375C22 = C20:4Q16 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).375C2^2 | 320,326 |
(C2xC40).376C22 = C2xD80 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).376C2^2 | 320,529 |
(C2xC40).377C22 = C2xC16:D5 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).377C2^2 | 320,530 |
(C2xC40).378C22 = C2xDic40 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).378C2^2 | 320,532 |
(C2xC40).379C22 = C2xC40:5C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).379C2^2 | 320,732 |
(C2xC40).380C22 = C40:29D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).380C2^2 | 320,742 |
(C2xC40).381C22 = C40.82D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).381C2^2 | 320,743 |
(C2xC40).382C22 = C22xDic20 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).382C2^2 | 320,1414 |
(C2xC40).383C22 = C80.6C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | 2 | (C2xC40).383C2^2 | 320,64 |
(C2xC40).384C22 = D40.3C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | 2 | (C2xC40).384C2^2 | 320,68 |
(C2xC40).385C22 = D80:7C2 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | 2 | (C2xC40).385C2^2 | 320,531 |
(C2xC40).386C22 = C2xC40.6C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).386C2^2 | 320,734 |
(C2xC40).387C22 = C40:9Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).387C2^2 | 320,307 |
(C2xC40).388C22 = C40.13Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).388C2^2 | 320,310 |
(C2xC40).389C22 = C8:5D20 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).389C2^2 | 320,320 |
(C2xC40).390C22 = C8.8D20 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).390C2^2 | 320,323 |
(C2xC40).391C22 = C2xC40:6C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).391C2^2 | 320,731 |
(C2xC40).392C22 = C23.22D20 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).392C2^2 | 320,733 |
(C2xC40).393C22 = C40:30D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).393C2^2 | 320,741 |
(C2xC40).394C22 = C4xC5:2C16 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).394C2^2 | 320,18 |
(C2xC40).395C22 = C40.10C8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).395C2^2 | 320,19 |
(C2xC40).396C22 = C20:3C16 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).396C2^2 | 320,20 |
(C2xC40).397C22 = C40.7C8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 80 | 2 | (C2xC40).397C2^2 | 320,21 |
(C2xC40).398C22 = C16xDic5 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).398C2^2 | 320,58 |
(C2xC40).399C22 = C40.88D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).399C2^2 | 320,59 |
(C2xC40).400C22 = C80:17C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).400C2^2 | 320,60 |
(C2xC40).401C22 = D10:1C16 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).401C2^2 | 320,65 |
(C2xC40).402C22 = D20.3C8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | 2 | (C2xC40).402C2^2 | 320,66 |
(C2xC40).403C22 = C40.91D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).403C2^2 | 320,107 |
(C2xC40).404C22 = D5xC4xC8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).404C2^2 | 320,311 |
(C2xC40).405C22 = C4xC8:D5 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).405C2^2 | 320,314 |
(C2xC40).406C22 = D10.5C42 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).406C2^2 | 320,316 |
(C2xC40).407C22 = D40:17C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 80 | 2 | (C2xC40).407C2^2 | 320,327 |
(C2xC40).408C22 = D5xC2xC16 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).408C2^2 | 320,526 |
(C2xC40).409C22 = C2xC80:C2 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).409C2^2 | 320,527 |
(C2xC40).410C22 = D20.6C8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | 2 | (C2xC40).410C2^2 | 320,528 |
(C2xC40).411C22 = C22xC5:2C16 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).411C2^2 | 320,723 |
(C2xC40).412C22 = C2xC20.4C8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).412C2^2 | 320,724 |
(C2xC40).413C22 = C2xC8xDic5 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).413C2^2 | 320,725 |
(C2xC40).414C22 = C2xC40:8C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).414C2^2 | 320,727 |
(C2xC40).415C22 = C20.42C42 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).415C2^2 | 320,728 |
(C2xC40).416C22 = C5xC2.D16 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).416C2^2 | 320,162 |
(C2xC40).417C22 = C5xC2.Q32 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).417C2^2 | 320,163 |
(C2xC40).418C22 = C5xC16:3C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).418C2^2 | 320,171 |
(C2xC40).419C22 = C5xC16:4C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).419C2^2 | 320,172 |
(C2xC40).420C22 = C10xC2.D8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).420C2^2 | 320,927 |
(C2xC40).421C22 = D8xC20 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).421C2^2 | 320,938 |
(C2xC40).422C22 = Q16xC20 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).422C2^2 | 320,940 |
(C2xC40).423C22 = C5xC8:4D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).423C2^2 | 320,994 |
(C2xC40).424C22 = C5xC4:Q16 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).424C2^2 | 320,995 |
(C2xC40).425C22 = C5xC8:2Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).425C2^2 | 320,1001 |
(C2xC40).426C22 = C10xD16 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).426C2^2 | 320,1006 |
(C2xC40).427C22 = C10xSD32 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).427C2^2 | 320,1007 |
(C2xC40).428C22 = C10xQ32 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).428C2^2 | 320,1008 |
(C2xC40).429C22 = Q16xC2xC10 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).429C2^2 | 320,1573 |
(C2xC40).430C22 = C5xD8.C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | 2 | (C2xC40).430C2^2 | 320,164 |
(C2xC40).431C22 = C5xC8.4Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | 2 | (C2xC40).431C2^2 | 320,173 |
(C2xC40).432C22 = C10xC8.C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).432C2^2 | 320,930 |
(C2xC40).433C22 = C5xC8oD8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 80 | 2 | (C2xC40).433C2^2 | 320,944 |
(C2xC40).434C22 = C5xC4oD16 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | 2 | (C2xC40).434C2^2 | 320,1009 |
(C2xC40).435C22 = C10xC4.Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).435C2^2 | 320,926 |
(C2xC40).436C22 = C5xC23.25D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).436C2^2 | 320,928 |
(C2xC40).437C22 = SD16xC20 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).437C2^2 | 320,939 |
(C2xC40).438C22 = C5xC8:5D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).438C2^2 | 320,993 |
(C2xC40).439C22 = C5xC8.12D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).439C2^2 | 320,996 |
(C2xC40).440C22 = C5xC8:3Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).440C2^2 | 320,999 |
(C2xC40).441C22 = C5xC8.5Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).441C2^2 | 320,1000 |
(C2xC40).442C22 = C5xD4.C8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | 2 | (C2xC40).442C2^2 | 320,155 |
(C2xC40).443C22 = C5xC8.C8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 80 | 2 | (C2xC40).443C2^2 | 320,169 |
(C2xC40).444C22 = C10xC8:C4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).444C2^2 | 320,904 |
(C2xC40).445C22 = M4(2)xC20 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).445C2^2 | 320,905 |
(C2xC40).446C22 = C5xC8:9D4 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).446C2^2 | 320,936 |
(C2xC40).447C22 = C5xC8:4Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 320 | | (C2xC40).447C2^2 | 320,947 |
(C2xC40).448C22 = C10xM5(2) | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).448C2^2 | 320,1004 |
(C2xC40).449C22 = C5xD4oC16 | φ: C22/C2 → C2 ⊆ Aut C2xC40 | 160 | 2 | (C2xC40).449C2^2 | 320,1005 |
(C2xC40).450C22 = C5xC16:5C4 | central extension (φ=1) | 320 | | (C2xC40).450C2^2 | 320,151 |
(C2xC40).451C22 = C5xC22:C16 | central extension (φ=1) | 160 | | (C2xC40).451C2^2 | 320,153 |
(C2xC40).452C22 = C5xC4:C16 | central extension (φ=1) | 320 | | (C2xC40).452C2^2 | 320,168 |
(C2xC40).453C22 = C5xC8o2M4(2) | central extension (φ=1) | 160 | | (C2xC40).453C2^2 | 320,906 |